Functional imaging and neural information coding.

نویسندگان

  • Angel Nevado
  • Malcolm P Young
  • Stefano Panzeri
چکیده

Measuring functional magnetic resonance imaging (fMRI) responses to parametric stimulus variations in imaging experiments can elucidate how sensory information is represented in the brain. However, a potential limitation of this approach is that fMRI responses reflect only a regional average of neuronal activity. For this reason stimulus-induced changes in fMRI signal may not always reflect how sensory information is encoded by neuronal population activity. We investigate the potential problems induced by the finite spatial resolution of the fMRI signal by combining the principles of Information Theory with a computational model of neuronal activity based on known tuning properties of sensory cortex and assuming a linear spike rate to fMRI signal relationship. We found that the relationship between neuronal information and fMRI signal is highly nonlinear. It follows that the brain voxel experiencing the largest fMRI signal change is not necessarily the voxel encoding the most sensory information. Results also show that functional imaging data can be better interpreted in terms of neural information processing if the fMRI data and some knowledge about the tuning properties of the underlying neuronal populations are incorporated into a computational model. We discuss how imaging techniques themselves may provide an estimation of neuronal tuning properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging

Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...

متن کامل

Understanding the visual cortex by using classification techniques. (Améliorer la compréhension du cortex visuel à l'aide de techniques de classification)

In this thesis, we present different approaches for statistical learning that can be used for studying the neural code of cognitive functions, based on brain functional Magnetic Resonance Imaging (fMRI) data. In particular, we study the spatial organization of the neural code, i.e. the spatial localization and the respective weights of the different entities implied in the neural coding. In thi...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain.

Left-right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left-right asymmetry in the honey bee's primary olfactory centre, the antennal lobe (AL). When both antennae w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2004